synchro twist S(++) (Acharya, Tavale & Guru Row, 1984).

The molecules are held together by van der Waals interactions.

## References

- ACHARYA, K. R., TAVALE, S. S. & GURU ROW, T. N. (1984). Proc. Indian Acad. Sci. (Chem. Sci.), 93, 271–282.
- Ammon, H. L., Zhang, D., Choi, C. S., Sandus, O., Marchand, A. P. & Suri, S. C. (1985). Acta Cryst. C41, 404–406.
- BRYCE-SMITH, D. & GILBERT, A. (1976). Tetrahedron, 32, 1309-1326.
- EATON, P. E., RAVI SHANKER, B. K., PRICE, G. D., PLUTH, J. J., GILBERT, E. E., ALSTER, J. & SANDUS, O. (1984). J. Org. Chem. 49, 185–186.
- GANTZEL, P. K., SPARKS, R. A. & TRUEBLOOD, K. N. (1961). LALS. Program for the full-matrix refinement of positional and thermal parameters and scale factors. Univ. of California, USA.

- GEORGE, C., GILLARDI, R., FLIPPEN-ANDERSON, J. L., CHOI, C. S., MARCHAND, A. P. & REDDY, D. S. (1985). *Acta Cryst.* C41, 788-791.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MEHTA, G., MURTHY, A. N., REDDY, D. S. & REDDY, A. V. (1986). J. Am. Chem. Soc. 108, 3443-3452.
- SOLOTT, G. P. & GILBERT, G. E. (1980). J. Org. Chem. 45, 5405-5408.
- WATSON, W. H., MARCHAND, A. P. & DAVE, P. R. (1987). Acta Cryst. C43, 1569-1571.
- WENDER, P. A. (1983). Selectivity A Goal for Synthetic Efficiency, edited by W. BARTMAN & B. M. TROST, pp. 335–348. Berlin: Verlag Chemie.

Acta Cryst. (1988). C44, 2193-2195

## Structure of 2-Amino-4-(methylphosphinico)butyric Acid Hydrochloride

## By W. SAWKA-DOBROWOLSKA

Institute of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-383 Wrocław, Poland

(Received 8 April 1988; accepted 12 July 1988)

Abstract.  $C_5H_{13}NO_4P^+.Cl^-$ ,  $M_r = 217.8$ , monoclinic,  $P2_1/n, a = 12.642$  (5), b = 5.474 (3), c = 14.233 (5) Å,  $\beta = 105 \cdot 10 (5)^{\circ}, V = 950 \cdot 9 \text{ Å}^3, Z = 4, D_m = 1 \cdot 52 (1),$  $D_x = 1.52 \text{ Mg m}^{-3}$ ,  $\lambda(Mo K\alpha) = 0.71069 \text{ Å},$  $\mu =$  $0.55 \text{ mm}^{-1}$ , F(000) = 456, T = 292 K, R = 0.038 for 1359 observed reflexions. The molecule exists in a cationic form in which the amino group is protonated and the carboxylic and the phosphinic acid groups are neutral. The N-C-COOH moiety is nearly planar, the torsion angle  $\psi'$  is  $-2.0 (4)^\circ$ ;  $C^{\nu}(1)$  is gauche to both C(4) and N with torsion angles  $\chi^1$  and  $\chi^2$  at -49.1 (4) and  $73.8 (3)^{\circ}$  respectively; P is *trans* to  $C^{\alpha}(3)$  $[P-C^{\nu}(1)-C^{\beta}(2)-C^{\alpha}(3) = -163.9 (3)^{\circ}]$ . There is extensive intermolecular hydrogen bonding in the structure.

Introduction. It has been known for more than twenty years (Mastalerz, 1959) that the phosphonic and phosphinic acid analogues of glutamic acid possess inhibitory properties towards glutamine synthetase. Phosphinothricin [2-amino-4-(methylphosphinico)butyric acid] has been isolated from cultures of *Streptomyces viridochromogenes* (Bayer *et al.*, 1972) and *Streptomyces hygroscopicus* as the tripeptide, phosphinothricyl-alanyl-alanine. This tripeptide is active against Gram-positive and Gram-negative bacteria and also against the fungi *Botrytis cinerea*, sheath blight and rice blast (Kondo *et al.*, 1973). The two alanine residues allow the penetration of this tripeptide through the cell wall. Inside the cell it is assumed that phosphinothricin is liberated by 'lethal cleavage of an inactive material'.

D,L-Phosphinothricin is an active glutamine synthetase inhibitor (Mastalerz, 1959; Leason, Cunliffe, Parkin, Lea & Miflin, 1982) and shows herbicidal properties (Rupp, Finke, Beringer & Lagenlueddeke, 1977). Recently, the crystal structures of DL- and L-phosphinothricin have been reported by Paulus & Grabley (1982). This paper reports the first X-ray structure of an aminophosphinic acid hydrochloride.

**Experimental.** The free phosphinothricin was prepared by the method developed by Dr E. Gruszecka-Kowalik at the Institute of Organic and Physical Chemistry, Technical University of Wrocław, Poland. Clear colourless crystals were obtained by slow evaporation from a saturated aqueous solution with excess 20% hydrochloric acid. Crystal of dimensions  $0.28 \times$  $0.40 \times 0.45$  mm:  $D_m$  by flotation in carbon tetrachloride/ethylene bromide: monoclinic  $P2_1/n$  from Weissenberg photographs. Syntex  $P2_1$  computercontrolled four-circle diffractometer, scintillation

0108-2701/88/122193-03\$03.00

© 1988 International Union of Crystallography

counter, Mo  $K\alpha$  radiation, graphite monochromator. Cell parameters by least squares from setting angles of 15 reflexions with  $15 \le 2\theta \le 24^\circ$  measured on the diffractometer. 1614 independent reflexions:  $2\theta_{max} =$ 55.0°; variable  $\theta$ -2 $\theta$  scans, scan rate 2.0-29.3° min<sup>-1</sup>, depending on intensity: two standards (233, 326) measured every 50 reflexions. Variation in intensities +2%: data corrected for Lorentz and polarization but not for absorption; 1359 with  $I > 3\sigma(I)$  used for structure determination: index range h 0 to 14, k 0 to 6,  $l \pm 16$ . All calculations performed with Syntex (1976) *XTL/XTLE* system: neutral-atom scattering factors from International Tables for X-ray Crystallography (1974); direct methods via Syntex (1976) version of MULTAN (Germain, Main & Woolfson, 1971); fullmatrix least squares, minimizing  $\sum w(|F_o| - |F_c|)^2$ ,  $w = 1/\sigma^2(F)$ ; difference synthesis revealed H atoms: non-H atoms refined with anisotropic thermal parameters and H atoms isotropically; max.  $\Delta/\sigma = 0.01$ ,  $\Delta\rho$ within +0.2 and -0.18 e Å<sup>-3</sup>, R = 0.038, wR = 0.041, S = 2.60.

Discussion. Final atomic parameters are in Table 1.\* Interatomic distances and selected torsion angles are in Table 2. The atom-labelling scheme (IUPAC-IUB Commission on Biochemical Nomenclature, 1970) is illustrated in Fig. 1, which shows that the phosphinic acid and  $\alpha$ -carboxyl groups are in their neutral forms.

The  $\alpha$ -carboxyl group is planar. The C=O and C-OH bond lengths are 1.208 (4) and 1.297 (4) Å, similar to those found in L-glutamic acid hydrochloride (Sequeira, Rajagopal & Chidambaram, 1972). The C-OH bond length in the protonated  $\alpha$ -carboxyl group in L-Glu hydrochloride and the present compound are shorter [1.296 (8) and 1.297 (4)Å than the values observed for  $\gamma$ -carboxyl groups [1.313 (1), 1.312 (2) 1.315 (8) Å, mean 1.313 Å] (Lehmann, Koetzle & Hamilton, 1972; Lehmann & Nunes, 1980). The two O-C-C angles differ from each other, being 122.5 (3) and 111.5 (3)° (see Marsh & Donohue, 1967). The angle O-C-O of 122.5 (3)° is normal for amino acids.

The maximum deviation from the least-squares plane through the carboxyl group, O(3), O(4), C'(4) and  $C^{\alpha}(3)$  is 0.005 (3) Å. The distance of the N atom from this plane is 0.034(3) Å and the O(3)-C'(4)- $C^{\alpha}(3)$ -N torsion angle  $(\psi^{1})$  is -2.0 (4)°. This angle is greater  $[-11.5 (2)^{\circ}]$  in DL-phosphinothricin (Paulus & Grabley, 1982).

In the present structure P-O(1) = 1.494(2) and P-O(2) = 1.560(2) Å, indicative of double and single Table 1. Positional parameters and equivalent isotropic temperature factors  $(Å^2)$  with e.s.d.'s in parentheses

| $B_{eq} = \frac{1}{3} \sum_{j=1}^{3} \beta_{ij}  a_i^{\dagger}   a_j^{\dagger}   a_j .$ |             |             |            |           |  |  |  |
|-----------------------------------------------------------------------------------------|-------------|-------------|------------|-----------|--|--|--|
| i=1 $j=1$                                                                               |             |             |            |           |  |  |  |
|                                                                                         | x           | у           | Ζ          | Bea       |  |  |  |
| Р                                                                                       | 0.1765 (1)  | 0.1079 (2)  | 0-4692 (1) | 1.83 (1)  |  |  |  |
| Cl                                                                                      | 0.1370(1)   | 0.3242 (2)  | 0.7069(1)  | 2.73 (2)  |  |  |  |
| O(1)                                                                                    | 0.2799 (2)  | 0.2536 (4)  | 0.4886 (2) | 2.45 (6)  |  |  |  |
| O(2)                                                                                    | 0.0805 (2)  | 0.2504 (4)  | 0.4942 (2) | 2.66 (6)  |  |  |  |
| O(3)                                                                                    | -0.0024 (2) | -0.1537 (5) | 0.0984 (2) | 3.64 (7)  |  |  |  |
| O(4)                                                                                    | 0.1523 (2)  | 0.0590 (5)  | 0.1196 (2) | 3.42 (7)  |  |  |  |
| N                                                                                       | -0.0984 (2) | 0.1812 (6)  | 0.1853 (2) | 2.48 (7)  |  |  |  |
| C <sup>y</sup> (1)                                                                      | 0.1202 (3)  | 0.0434 (6)  | 0.3430 (2) | 2.30 (8)  |  |  |  |
| C <sup>β</sup> (2)                                                                      | 0.0915 (2)  | 0.2743 (6)  | 0.2815 (2) | 2.25 (8)  |  |  |  |
| C°(3)                                                                                   | 0.0153 (2)  | 0.2304 (6)  | 0.1802 (2) | 2.10 (8)  |  |  |  |
| C'(4)                                                                                   | 0.0536 (3)  | 0.0224 (7)  | 0.1274 (2) | 2.40 (8)  |  |  |  |
| C(M)                                                                                    | 0.1972 (3)  | -0·1697 (7) | 0.5343 (3) | 3.14 (10) |  |  |  |
|                                                                                         |             |             |            |           |  |  |  |

Table 2. Molecular geometry (e.s.d.'s in parentheses)

| (a) Bond lengths                       | (Å)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                       |  |  |
|----------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|--|--|
| $\dot{\mathbf{P}} - \mathbf{O}(1)$     | 1.494 (2)                                           | $C^{\beta}(2) - C^{\alpha}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3) 1.5             | 29 (4)                |  |  |
| P = O(2)                               | 1.560 (2)                                           | C°(3)-C'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4) 1.5              | 12 (5)                |  |  |
| P-C(1)                                 | 1.786 (3)                                           | C°(3)-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.4                 | 82 (4)                |  |  |
| P-C(M)                                 | 1.764 (4)                                           | C'(4)-O(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3) 1.2              | 08 (4)                |  |  |
| $C^{\gamma}(1) - C^{\beta}(2)$         | 1.527 (5)                                           | C'(4)—O(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i) 1.2              | 97 (4)                |  |  |
| (b) Volence angle                      | c (°)                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                       |  |  |
| O(1) P $O(2)$                          | 1127(1)                                             | C(1)* C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1)                 | 114 1 (2)             |  |  |
| O(1) = F = O(2)                        | 112.7(1)<br>112.1(1)                                | $C(1)^{\prime} - C(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $C^{(3)}$           | $114 \cdot 1(3)$      |  |  |
| O(1) - F - C(1)                        | $113 \cdot 1(1)$                                    | $N - C^{*}(3) - C^{*}(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-C^{\mu}(2)$       | 111.3(3)              |  |  |
| O(1) - P - C(M)                        | $111 \cdot 1(2)$                                    | $N = C^{\alpha}(3) = C^{\beta}(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -C'(4)              | $109 \cdot 1(3)$      |  |  |
| O(2) = P = C(M)                        | 101.4(1)<br>109.2(2)                                | O(3) C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3) = C'(4)         | 112.4(3)<br>126 0 (2) |  |  |
| C(1) = P = C(M)                        | 109.2(2)                                            | $C_{\alpha}(2) = C_{\alpha}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (4) - O(4)          | 120.0(3)              |  |  |
| $P_{1} = C(1) = C(M_{1})$              | 100.9(2)<br>112.7(2)                                | O(4) C'(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4) - O(3)          | 122.5(3)<br>111.5(3)  |  |  |
|                                        | 112.7 (2)                                           | 0(+)-0 (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )-C (3)             | 111.5 (3)             |  |  |
| (c) Torsion angles                     | s (°)                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                       |  |  |
| C(M) - P - C(1) - C(2)                 | 175.8 (3)                                           | $\chi^{i} C^{\nu}(1)' - C^{\beta}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C°(3)-C'(4)        | -49.1 (4)             |  |  |
| $O(1) - P - C^{\nu}(1) - C^{\beta}(2)$ | ) -60.2 (3)                                         | $\chi^2 C^{p}(1) - C^{\beta}(2) -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -C°(3)–N            | 73-8 (3)              |  |  |
| $O(2) - P - C^{\nu}(1) - C^{\rho}(2)$  | ) 60.7 (3)                                          | $\chi' O(3) - C'(4) - Q'(4) - Q'$ | C°(3)—N             | -2.0 (4)              |  |  |
| H(1) - O(2) - P - C'(1)                | 178-2 (28)                                          | $\chi^2 O(4) - C'(4) - U(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $C^{\alpha}(3) = N$ | 178-8 (3)             |  |  |
| P = C'(1) = C''(2) = C''(2)            | 3) -163.9 (3)                                       | H(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C'(4) = C''(3)      | -1/3-5 (36)           |  |  |
| (d) Hydrogen-bond geometry (Å,°)       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                       |  |  |
| $D-H\cdots A$                          | $D \cdots A$                                        | 1 <i>D</i> –H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H…A                 | $D - H \cdots A$      |  |  |
| O(2)-H(1)C1                            | 2.952 (                                             | (2) 0.77 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.19 (3)            | 170 (3)               |  |  |
| O(4)-H(13)····O(1)-                    | P 2.567 (                                           | 3) 0.99 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-59 (4)            | 166 (4)               |  |  |
| N-H(12)····C1 <sup>#</sup>             | 3.262 (                                             | 3) 0.97 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.29 (3)            | 173 (3)               |  |  |
| N-H(11)····C1 <sup>III</sup>           | 3.211 (                                             | 3) 1.07 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.16 (4)            | 167 (3)               |  |  |
| NH(10)O(1*)-P                          | 2.843 (                                             | 3) 0.93 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-92 (4)            | 172 (3)               |  |  |
| Symmetry code:                         | (i) $\frac{1}{2} - x_1 - \frac{1}{2} + \frac{1}{2}$ | $-v, \frac{1}{2}-z$ ; (ii) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-x_{-}v_{-}1_{-}$  | · z: (iii) —)         |  |  |

1-y, 1-z; (iv)  $-\frac{1}{2}+x, \frac{1}{2}-y, -\frac{1}{2}+x, \frac{1}{2}+x, \frac{1}{2}-y, -\frac{1}{2}+x, \frac{1}{2}+x, \frac{$ 



Fig. 1. An ORTEP (Johnson, 1976) drawing of the title compound with the atom-numbering scheme.

<sup>\*</sup> Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51239 (12 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

bonds respectively. The  $P-C^{\nu}(1)$  and P-C(M) distances of 1.786(3) and 1.764(4) Å are somewhat shorter than the corresponding values [1.825 (6)], 1.806 Å] in aminomethyl(methyl)phosphinic acid (Głowiak & Sawka-Dobrowolska, 1977) and in DLphosphinothricin [1.803 (2) and 1.790 (2) Å: Paulus & Grabley (1982)]. The P-coordination departs significantly from a regular tetrahedron (Table 2). The protonated O atom influences the bond angles at P. The largest two O-P-O and O-P-C angles of 113.1 (1) and  $112.7 (1)^{\circ}$  involve the unprotonated O(1), the protonated O(2) and C(1). The smallest angle of  $101.4(1)^{\circ}$  involves C(1) and the protonated O(2) atom; this angle is considerably smaller than the corresponding angle in L-phosphinothricin (Paulus & Grabley, 1982) [108.0 (1)°].

The two bond angles  $C^{\nu}(1)-C^{\beta}(2)-C^{\alpha}(3)$  and  $P-C^{\nu}(1)-C^{\beta}(2)$  [114.1 (3) and 112.7 (2)°] are similar to the corresponding angles in L-Glu hydrochloride [115.8 (4) and 112.0 (4)°], DL-glutamic acid [113.6 (2) and 113.6 (2)°] (Ciunik & Głowiak, 1983) and DL-phosphinothricin [113.3 (2) and 112.0 (1)°] (Paulus & Grabley, 1982).

The conformation of the molecule is described by the torsion angles  $\chi^1$ ,  $\chi^2$ ,  $\psi^1$  and  $\psi^2$ . The molecule assumes a gauche-gauche conformation with  $\chi^1$  and  $\chi^2$  [torsion angles about  $C^{\beta}(2)-C^{\alpha}(3)$ ] =  $-49\cdot1(4)$  and  $73\cdot8(3)^{\circ}$  respectively. These are similar to the values found in L- and DL-phosphinothricin [ $\chi^1 = -65\cdot5(2)$ ,  $57\cdot8(3)^{\circ}$ ;  $\chi^2 = -45\cdot4(2)$ ,  $76\cdot7(2)^{\circ}$ ; Paulus & Grabley, 1982]. This implies that P is *trans* to  $C^{\alpha}(3)$  [P-C<sup>*v*</sup>(1)-C<sup> $\beta$ </sup>(2)-C<sup> $\alpha$ </sup>(3) =  $-163\cdot9(3)^{\circ}$ ], this being the only possible conformation.

The torsion angles  $\psi^1$  and  $\psi^2$  (Table 2) are near 0 and 180° as usually observed.

The conformation around  $P-C^{\nu}(1)$  is defined by the C(M)-P-C(1)-C(2), O(2)-P-C(1)-C(2) and O(1)-P-C(1)-C(2) angles of 175.8 (3), 60.7 (3) and -60.2 (3)°. Thus both O atoms are synclinal with respect to the carbon backbone and C(methyl) is antiperiplanar. These values contrast with the 66.1 (2), -51.2 (2) and -173.4 (1)° observed in L-phosphinothricin.



Fig. 2. Stereoview of crystal structure; hydrogen bonds are indicated by dashed lines.

There is extensive hydrogen bonding in the structure, with all potential donor and acceptor atoms participating. Relevant dimensions are in Table 2(d)and a stereoscopic drawing of the unit cell is shown in Fig. 2. The amino group interacts with two Cl<sup>-</sup> ions and O(1) of the phosphinic acid group. Adjacent molecules are held together by pairs of N<sup>+</sup>-H····Cl<sup>-</sup> hydrogen bonds, related by a centre of symmetry. H(11) and H(12) are donated to two Cl<sup>-</sup> ions, and the third amino H atom, H(10), is donated to O(1) of an *n*-glide related molecule. The hydrogen-bonding scheme is completed with the formation of short hydrogen bonds from O(2)(phosphinic) and O(4)(carboxyl) to  $Cl^-$  and O(1)(screw related) respectively. These intermolecular hydrogen bonds are similar to the hydrogen bonds found in L-Glu hydrochloride.

This work was supported by the Polish Ministry of Science and Higher Education (Project RP.II.10).

## References

- BAYER, E., GUGELE, K. H., HAEGELE, K., HAGENMAIER, H., JESSIPOW, S., KOENIG, W. A. & ZACHNER, H. (1972). *Helv. Chim. Acta*, 55, 224–226.
- CIUNIK, Z. & GŁOWIAK, T. (1983). Acta Cryst. C39, 1271-1273.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368–375.
- GLOWIAK, T. & SAWKA-DOBROWOLSKA, W. (1977). Acta Cryst. B33, 1522-1525.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- IUPAC-IUB COMMISSION ON BIOCHEMICAL NOMENCLATURE (1970). J. Mol. Biol. 52, 1-17.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kondo, Y., Shomura, T., Ogawa, Y., Suzuki, T., Moriyama, Ch., Ioshida, J., Inonye, Sh. & Niida, T. (1973). Sci. Rep. Meiji Seika Kaisha, 13, 34–42.
- LEASON, M., CUNLIFFE, D., PARKIN, D., LEA, P. J. & MIFLIN, B. J. (1982). Phytochemistry, 21, 855-858.
- LEHMANN, M. S., KOETZLE, T. F. & HAMILTON, W. C. (1972). J. Cryst. Mol. Struct. 2, 225–233.
- LEHMANN, M. S. & NUNES, A. C. (1980). Acta Cryst. B36, 1621-1625.
- MARSH, R. E. & DONOHUE, J. (1967). Adv. Protein Chem. 22, 235-256.
- MASTALERZ, P. (1959). Arch. Immunol. Terapii Doświadczalnej, 7, 201–203.
- PAULUS, E. F. & GRABLEY, S. (1982). Z. Kristallogr. 160, 39-44, 63-68.
- RUPP, W., FINKE, M., BERINGER, H. & LAGENLUEDDEKE, P. (1977). German Patent No. 2 717 440, 22 pp.: Chem. Abstr. (1978), 88 P 7049 e.
- SEQUEIRA, A., RAJAGOPAL, H. & CHIDAMBARAM, R. (1972). Acta Cryst. B28, 2514–2519.
- Syntex (1976). XTL/XTLE Structure Determination System. Syntex Analytical Instruments, Cupertino, California, USA.